Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

نویسندگان

  • Hongxia Ren
  • Taylor Y. Lu
  • Timothy E. McGraw
  • Domenico Accili
چکیده

The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glut4 expression defines an insulin-sensitive hypothalamic neuronal population

Insulin signaling in the CNS modulates satiety and glucose metabolism, but insulin target neurons are poorly defined. We have previously shown that ablation of insulin receptors (InsR) in Glut4-expressing tissues results in systemic abnormalities of insulin action. We propose that Glut4 neurons constitute an insulin-sensitive neuronal subset. We determined their gene expression profiles using f...

متن کامل

Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughou...

متن کامل

Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior.

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are central components of systems regulating appetite and energy homeostasis. Here we report on the establishment of a mouse model in which the ribonuclease III ribonuclease Dicer-1 has been specifically deleted from POMC-expressing neurons (POMC(ΔDCR)), leading to postnatal cell death. Mice are born phenotypically no...

متن کامل

Altered hepatic and muscle substrate utilization provoked by GLUT4 ablation.

Studies were conducted to explore altered substrate utilization and metabolism in GLUT4 null mice. Liver fatty acid synthase mRNA and fatty acid synthesis rates were dramatically increased in GLUT4 null mice compared with control mice and were supported by increased rates of the pentose phosphate pathway oxidative phase and sterol regulatory binding protein mRNA expression. Increased GLUT2 prot...

متن کامل

Delayed response of insulin-stimulated fluorine-18 deoxyglucose uptake in glucose transporter-4-null mice hearts.

OBJECTIVES We sought to evaluate the time course of insulin-stimulated myocardial glucose uptake (MGU) in mice that had undergone ablation of glucose transporter-4 (GLUT4). BACKGROUND The relative importance of GLUT4, the most abundant insulin-responsive glucose transporter, to modulate myocardial glucose metabolism is not well defined. METHODS Myocardial glucose uptake was assessed at vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2015